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Alternating direction implicit numerical techniques for solving time-dependent, 
two-dimensional, two-fluid magnetohydrodynamic equations are presented. The 
techniques are illustrated with applications to the dynamics of a theta pinch and the 
expansion of a laser produced plasma and important features of both cases are de- 
monstrated. The enhanced numerical stability of the method is discussed. 

INTRODUCTION 

The rapid advance in computer technology in recent years has led to an effort 
to extend the state of the art in computational magnetohydrodynamics to two 
dimensions. The pioneering work of Hain et al. [l] in one-dimensional calculations 
occurred just over a decade ago and has been developed and extended to the point 
where Roberts and Potter [2], in their recent review of magnetohydrodynamic 
calculations, have suggested that presently realistic one-dimensional calculations 
are routine. The theta pinch computations of Duchs [3] are the first two-dimensional 
calculations using a reasonably complete model to be published. Freeman and 
Lane [4] presented some theta pinch results, and their code has recently been 
applied to the study of the interaction of a plasmoid with a solenoidal magnetic 
field [5]. The plasma focus calculations by Potter [6] have been presented in the 
review of Roberts and Potter [2]. Hertweck and Schneider [7], and more recently 
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Schneider [S], have performed computations on the dynamics of a theta pinch. 
Chase, LeBlanc, and Wilson have used a two-dimensional magnetohydrodynamic 
model to investigate the role of spontaneous magnetic fields in a laser-produced 
plasma [9]. With the exception of the work of Hertweck and Schneider, all of the 
calculations have been of the Eulerian type. In Hertweck and Schneider’s work 
the grid lines are the magnetic field lines, but the work is limited by an assumption 
of infinite conductivity. 

The magnetohydrodynamic models used are similar and are various approxi- 
mations to the more complete model given by Braginskii [IO]. The models have 
as characteristic velocities the fluid velocity and magnetosonic velocity and 
include thermal diffusion of energy and resistive diffusion of the magnetic 
field. The requirement for numerical stability of an explicit scheme leads to an 
upper bound on the time step dt given by dt < v dx, where v is the maximum 
characteristic velocity, and dx is a spatial zone size, or At < k(A~)~/2, where k is 
the maximum diffusion coefficient. The restrictions are, of course, conditions which 
must be satisfied throughout the entire grid, and often the lowest upper bound 
occurs in a region which is not the most important region from a physical stand- 
point. Because the quadratic dependence of the second condition quite often leads 
to a severe restriction on the time step, several authors cited above have incor- 
porated the alternating direction implicit (ADI) method of Peaceman and 
Rachford [Ill into their finite difference schemes. Others use “splitting” and an 
implicit scheme to handle the thermal and resistive diffusion. However, even those 
who have implemented such procedures retain an explicit treatment of convective 
transport. 

In this paper, a method for calculating simultaneously both convective and 
diffusive two-dimensional transport in magnetohydrodynamics using alternating 
direction implicit finite difference equations is presented. The rationale for this 
work is, of course, that alternating direction implicit equations allow information 
to propagate from a grid point to any other point in the finite difference mesh 
within two time steps, so that time step restrictions, if any, should not be as severe 
as those encountered with explicit methods. 

As applications of the method, calculations demonstrating the dynamics of a 
theta pinch in a mirror magnetic field and the expansion of a high density plasma 
sphere (e.g., a laser-produced plasma) into a uniform magnetic field are included. 

MAGNETOHYDRODYNAMIC MODEL 

We use a two-fluid model, i.e., separate temperatures are calculated for ions and 
electrons. The pressure is a scalar, but the thermal conductivity and electrical 
resistivity are tensors. The equations solved are given by 
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cap/at) + v . vp + pv - v = 0, (1) 

g + v . vv + ye, + 0,) + FVp+-&B x (V x B)=O; (2) 

$ + v . vei + cy - I) eiv . v - i v - (Xi . ve,) +f,,(e, - e,) = 0; (3) 

2+ v . ve, + cy - 1) ee v . v - i v . (Ee . ve,) 

+ f,,(k - 4) - v(i. V x B) - (V x B) = 0; 
0 (4) 

@B/at) + v . VB + B(V . v) - B . Vv + (l/p,) V x (5 . V x B) = 0; (5) 

where p is the mass density, v the fluid velocity, Be and ei the electron and ion 
temperatures, and B the magnetic field; the transport coefficientsf,, , 4, Ri , and & 
are the equipartition frequency, resistivity matrix, ion thermal conductivity 
matrix and electron thermal conductivity matrix, respectively, and y, p. are 
constants. 

The use of tensor thermal conductivities and tensor resistivity implies the 
presence of a magnetic field which, although not strong enough to lead to 
anisotropic temperatures, is strong enough to alter the thermal conduction and 
resistance in directions perpendicular to the magnetic field. The heat flow vector q. 
is given by 

and 
huh = -wahwah . (7) 

In Eqs. (6) and (7) the subscript symbols I and II are used to designate components 
of vectors perpendicular and parallel, respectively to the magnetic field and to 
differentiate between perpendicular and parallel transport coefficients. 

The transport coefficients used in the calculations shown in this paper were taken 
from Spitzer [12] and Kaufman [13]. Spitzer’s equipartition frequency, strong 
field resistivity, and parallel thermal conductivities, including the factors E and 6, , 
have been used. Kaufman’s strong field thermal conductivities, with Spitzer’s 
Coulomb logarithm, have been used with the interpolation method of Hain et al. [l] 
to calculate the perpendicular thermal conductivities. We emphasize, however, that 
the numerical method reported here does not depend on the specific form of the 
coefficients and the computer code in which the method has been implemented 
has been purposely set up to facilitate using forms other than those actually used 
in the calculations of this article. 
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The equations describe the temporal and spatial variation of nine quantities, 
the density, the three velocity components, the ion and electron temperature, and 
the three magnetic-field components. It is convenient to introduce a vector U 
which has as its components all the dependent variables to be calculated, and a 
vector K which has as its components all the transport coefficients, so that for the 
complete set of two-fluid equations, in two dimensions, the vectors are 

U = W, =, t> = (p, u, , ~0 , v, , 4 , 6, , B, , BP , 4) (8) 

and 

where the superscripts have been used for convenience to designate components 
of the thermal conductivity matrices. 

It is possible to write the equations in a variety of ways, all of which in differential 
form are exactly equivalent; in many cases, a “conservative” form of the differential 
equations in which derivatives are not expanded leads to the best finite difference 
equations. It is also possible to introduce alternate variables. For example, the 
specific volume V = l/p and the pressures P, = pool are often calculated in 
computational hydrodynamics. For any magnetohydrodynamic model in which 
B, and B, are to be calculated, it is advantageous to calculate directly a stream 
function # given by 

Both B, and B, can be calculated from z/ as 

B, = -WrWW=> B, = (I/r)(~~/&+). (11) 

The introduction of 4 as an alternate variable has the advantage of reducing by 
one the number of equations to be solved and also facilitates the determination of 
magnetic field lines, which are the contours of constant $, and also guarantees 
that div B = 0. 

DIFFERENCE METHODS 

It is possible to consider varied explicit finite difference approximations to the 
two-dimensional magnetohydrodynamic partial differential equations. When one 
then considers implicit or alternating direction implicit approximations, the number 
of possibilities increases. Consequently, in the course of development of the 
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method given here, many schemes have been excluded, some rather arbitrarily. 
In this section, the basic features of the method which have persisted are presented. 
In essence, the method is Eulerian, linear, two level, and simultaneous. 

The finite difference equations are purposely intended to be linear in the 
dependent variables at the new time step, and, in fact, it is the linearization which 
is a fundamental feature of the method. In contrast to explicit difference equations, 
the linear ADI difference equations given here are coupled in all unknown 
dependent variables, both at a particular mesh point and its adjacent neighboring 
mesh points. 

The finite difference equations are written in terms of quantities at only two time 
levels. The basic structure of the original work of Peaceman and Rachford [l l] is 
retained in that two different finite difference approximations are used alternately, 
one to advance the calculations from a time t” to a time tn+l and a second from 
tn+l to tn+2, and the second approximation needs no information about the values 
at P. The bilevel equations have obvious advantages in requiring minimal memory 
size and in facilitating time step variation; the time step can be varied after each 
two time steps with no loss in truncation error. In conjunction with the bilevel 
equations, a nonstaggered spatial array is used so that all dependent variables are 
defined at the same spacetime point. 

Finally, a very important property of the method is that all physical processes 
are calculated simultaneously. With only one sweep through the mesh with either 
of the alternately used difference approximations, all convective, diffusive, and 
local processes are calculated directly without the need to calculate intermediate 
values. 

The set of partial differential equations to be solved can be written as 

where T is a vector function of the arguments indicated. (We consider the case of 
mixed derivatives later.) 

In the following, a superscript n and subscripts i and j will refer to the point 
(t”, ri , zi) in the spacetime mesh. 

Equation (12) states that 

@U/at);,;’ + T;,;’ = 0. (13) 

The /3 component of T can be written as 

T, = fe ( U, ar , - i3U ZNJ K aK 
1 ( l ge 

NJ a2U aK 
8r2 ’ ‘ar Us aZ 3 m 9 K, x)9 (14) 
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where f@ and g6 are vector functions of the arguments indicated. The problem now 
is to put f@ and gS into useful forms. This can be accomplished correct to second 
order in dt by using a linearization procedure. A Taylor expansion of the E 
component of f6 gives 

(fc”)II:’ = f: + At ] [jg + g$ $ + a(;gar) +$&-I 9 OL Y M Y Lx 
w aK aw + [a(ay,ar) + a(aKJar) av, 3 6r + aft aw, 

I a(%!l,/W) W at ’ (15) 

where the superscript n and the subscripts i and j are expressly implied for all 
quantities on the right-hand side, and where repeated subscripts 01 and y imply 
a summation. Replacing the time derivatives by forward differences, we can write 
the first approximation to Eq. (13) as 

(A’):, I-J;:’ + (B’)$(aU/ar);;’ + (C’)~j(a2U/ar2);,~1 = (v’)& , (16) 

where 2, B’, and c?’ are matrices, functionally dependent on U, aU/ar, a2U/ar2, 
K, ZJK/ar, aU/az, a2U/az2, and aK/az, and having elements 

c;, = g,B ajya(aW,lar2), (19) 

and V’ is a vector with components 

v,’ = -g:f: + A,&& + B;,(W/ar) + c;,WWr2). cw 

In Eqs. (17) through (20), the superscripts n and subscripts i and j are expressly 
implied, and the repeated subscripts 01, y, and E indicate a summation, but no 
summation is indicated by the repeated superscript /3 on g and f. The Kronecker 
delta 8,, , appears in Eq. (17). Defining (dr,), = ri+l - rl and (dr-), = ri - rivl , 
one can put Eq. (16) into its final form, 



ALTERNATING DIRECTION IMPLICIT TECHNIQUES 187 

with 
Ar, - Ar- B, _ 

&or = A;cz + Ar+ A,.- BU 
2 ci 

Ar+Ar- 01’ 

Ar- 
*‘a = Ar+(Ar- + Ar,) *” ’ 

2 
Ar+(Ar- + Ar,) “’ ’ 

Ar+ 
‘,a = Ar-(Ar- + Ar,) 

2 
*‘, - Ar-(Ar- + Ar,) 

C’ 
‘a 

(22) 

(23) 

(24) 

and 
v, = V,‘. (25) 

Analogous to Eq. (15), a Taylor expansion of the E component of gfl gives 

I 
aw, ag: aw 
a.2 at + a(aw,/azy a3 at I ’ 

(26) 

where here a superscript n + 1 as well as subscripts i and j are expressly implied 
for all quantities on the right-hand side. Then we can write the second approxi- 
mation to (13) as 

(A’):;1 u:,$2 + (B’):~(au/az):;2 + g?):,;l(aw/az2):$2 = (v):,$l , (27) 

where w’, B’, c’, and V’ are given by 

ag: aK &++f?i[~+-~ ag,B a2~, 
aK, au, + a(aKvjaz) au, az 1 3 (28) 

I ’ (29) 

w 
(30) 

v,f = -gcfljy + A;,u, + *;u(au,/az) + c;,(aw,/azy. (31) 

In Eqs. (28) to (31) the superscript n + 1 and subscripts i and j are expressly 
implied. Defining (AZ,), = z~,, - zj and (AZ& = zj - zj-r , and introducing 
spatial difference equations, we obtain 
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with 

and 

4Ja = 43a + 
AZ, - AZ- 2 

AZ+ AZ- B.h - az+ Az_ CL > (33) 

Az- 2 
B6a = Az+(Az- + AZ,) B” + Az+(Az- + AZ,) ‘% ’ (34) 

AZ+ 2 
‘13’ = AZ-(AZ- + AZ,) B’a - AZ-(AZ- + AZ,) Bi’ ’ (35) 

v-6, = vi, . (36) 
Equations (21) and (32) represent two complete sets of finite difference approx- 

imations to the original differential equations (12). Each approximation is of first 
order accuracy in At and second order accuracy in space for a uniform mesh 
(Ar and AZ do not have to be equal); for a nonuniform mesh, the approximations 
to the terms involving second spatial derivatives are to first order accuracy only. 
When the two approximations are used on alternate time steps, an overall approx- 
imation to (12) that is second order in both time and space is obtained if the mesh 
is uniform as in the Peaceman-Rachford method. 

The computational difficulties resulting from a finite difference treatment of 
strong shock waves have long been recognized in computational hydrodynamics, 
and various authors have presented methods for eliminating them. The idea behind 
all methods is to introduce into the differential equations that are to be solved 
an enhanced numerical dissipative mechanism which limits the steepness of any 
gradients that occur and smooths out the transition region to a length greater than 
one mesh interval. The most quoted method is the von Neumann-Richtmyer [14] 
“artificial viscosity.” 

In the early two-fluid magnetohydrodynamic calculations, Hain et al. [l] used 
the von Neumann-Richtmyer artificial viscosity technique. However, the artificial 
viscous pressure heating was confined to only the ion energy equation, simulating 
the experimentally observed heating of ions in regions of strong shocks. In the 
calculations of this paper we used the “smoothing” method of Lapidus [15], 
which was first used in MHD calculations by Freeman and Lane [4]. The method 
essentially adds artificial diffusion to all partial differential equations to be solved, 
so that the equations take the form 

where 
(Z’U/at) + T + T,’ + T,’ = 0, (37) 

T,’ = ---Use $ ( j + 1%) 

T,’ = --am & (I $1 g) 
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where a is a constant of order unity. The use of Eq. (37) is appropriate only if the 
components of U are conserved quantities, e.g., mass, momentum, total energy, etc. 
When (37) is applied to a nonconservative form of the ion energy equation, an 
additional artificial viscous heating term should be included to account for the 
effective viscosity added to the equation of motion, and to assure conservation of 
energy. In the sample calculations given in this paper, this additional ion heating 
term was not included, however. Our most recent calculations use a von Neumann- 
Richtmyer artificial viscosity. 

Several of the sets of magnetohydrodynamic equations which take into account 
anisotropy introduced by the magnetic field will involve mixed second partial 
derivatives, i.e., a2U/ar az, in the partial differential equations to be solved, Mixed 
second partial derivatives are also introduced if an equation for the stream function 
#, defined in Eq. (lo), is used to replace the equations for the radial and axial 
magnetic fields, B, and B, , respectively. 

The solution of the sets of linear equations given by (21) or (32) is accomplished 
using the standard method [ 161 for tridiagonal systems. When mixed second partial 
derivatives are present the equations are differenced in such a way as to preserve 
the tridiagonal form of the equations and still retain the implicit form of the 
equations. 

The method for treating the mixed derivatives is essentially that used by 
Marx [17] in the AD1 numerical solution of the Fokker-Planck equation. The 
method results from successive Taylor approximations as follows: 

and 

The final difference equations are obtained by retaining only the first and fifth 
terms on the right-hand side of the last equality in (38) and the first two terms on 
the right-hand side of the last equality in (39) and approximating the retained terms 
correct to second order (for a uniform mesh; for a nonuniform mesh, the analogous 
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approximations will be first order only, just as for the nonmixed second partial 
derivatives). The final difference equations corresponding to (38) and (39) are, 
respectively, 

Equations (40) and (41) assume an ascending sequence of j and i, respectively, 
in the solution of (21) and (32). Thus the first two terms on the right-hand side of 
Eqs. (40) and (41) give contributions to the matrices B and c of Eqs. (21) and (32), 
and the remaining quantities-although some are “implicit,” they are known-give 
contributions to the vectors V. Getting started, i.e., calculating at j = 2 for the 
first time step and at i = 2 for the second, can be accomplished by using the 
boundary conditions. 

The overall two-step truncation error of (40) and (41) is 

e = O[(Lq2] + O[(dr)2] + o[(Az)2] + O[Llr At] + O[dz dt] 

for a uniform mesh. 
The basic method outlined above is applicable to the partial differential equations 

written so that all derivatives are completely expanded, i.e., so that the equations 
indeed have the functional form indicated by Eq. (14). In the basic method, terms 
of each equation are then broken into two parts, and one part is treated implicitly 
on the first time step and the second part is treated implicitly on the second time 
step. Nonlinear terms in the implicitly treated part are linearized in time. 

Alternating direction implicit finite difference equations can also be derived [18] 
for the equations written in “conservation” form [2]. Again, the terms in the 
equations are broken into two parts, one containing all r derivatives and one 
containing all z derivatives, and the former part is treated implicitly on the first 
time step and the latter on the second. 

APPLICATION: THETA PINCH 

In this section the AD1 methods developed are applied to the problem of 
following the dynamics of a two-dimensional theta pinch. As has been mentioned 
previously, nearly all significant magnetohydrodynamic computational research 
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has been concerned with stabilized z and theta pinches. Consequently, application 
of numerical techniques to the study of the theta pinch is not a new idea. However, 
the inclusion of tensor thermal conductivities in the differential equations and the 
use of ADI numerical techniques are both features which were not used in 
previously reported two-dimensional calculations. 

The equations used for the calculations reported in this section are a subset of 
two-fluid MHD equations. The vector to be calculated is 

U = (P, v, , vz , 4 , &. , & , BJ, 

and the transport coefficients involved in the equations are 

K = (K,':K,'",K,"",K,7:K:,K,Z?: fep, ?ler .). 

(42) 

(43) 

Azimuthal magnetic fields are excluded by definition, so if the plasma azimuthal 
motion is initially zero it will remain so; hence the exclusion, also, of vpl . 

For the applications, the transport coefficients and their derivatives have not 
been treated implicitly, i.e., in (15) and (26) aK,,/aU, = 0. When the code was 
originally developed, scalar transport coefficients were used, and the implicit 
methods were implemented rigorously. When the matrix transport coefficients were 
incorporated, they were treated explicitly. Since the transport coefficients and their 
spatial derivatives are not treated implicitly, the truncation error of those terms in 
which transport coefficients appear reverts to first order in dt. 

The calculations to be presented in this section are not an attempt to model a 
real device. They are rather intended to display the basic physical features of the 
pinch and to suggest the use of the AD1 method for future calculations attempting 
to correlate with experiment. Therefore, the region of solution is taken to be the 
rectangular region depicted in Fig. 1. For the calculations reported in this paper 
the domain of solution is subdivided into a 30 x 40 mesh, 30 points in the radial 
direction and 40 in the axial direction. The grid points are equally spaced in the 
radial and axial directions. To permit proper centering of the boundary conditions, -- 
no points lie on the boundaries OA, AB, and ?@. These boundaries are taken to lie 
halfway between the boundary rows of points and the first interior rows. The 
boundary BC coincides with the outermost axial row of points. 

The theta pinch gas is assumed to be fully ionized and initially uniform and at 
rest in a cylindrical region 4 cm in diameter with 7 cm between mirrors; because of 
symmetry it is sufficient to calculate the variables in a domain 2 cm x 3.5 cm in the 
r-z plane. The initial plasma density is 6.9 x 1015 ions/cm3 and the temperature is 
5 eV. The plasma had imbedded in it an initial homogeneous forward bias field of 
2 kilogauss. A 100 kilogauss magnetic field with mirror ratio of 2 and sinusoidal 
rise time of 2.5 psec is applied at zero time. 

Symmetry boundary conditions are used at the plane and axis of symmetry. 
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FIG. 1. Theta pinch region of solution. 

Values of all quantities except the radial magnetic field at the first interior point 
are reproduced on the mirror boundary; the radial magnetic field is set to zero so 
that the field lines are axial at the mirror. At the “wall” the magnetic field is 
specified and all fluid quantities are treated similarly to the method of Hain et al. [l] 
and Roberts et al. [2], who have discussed in detail the problem at the boundary; 
hence, a low density background gas is continually created at the wall as the main 
plasma implodes. 

Figures 2 through 4 show the initial implosion and subsequent rebound, or 
“bounce.” In the figures, the axis of symmetry is to the left, the plane of symmetry 
to the front, the wall to the right, and the mirror to the rear; the plasma density 
values at the actual finite grid points are plotted, although the scale in each figure 
is different and the zero is essentially the value at the wall and not the bottom of 
the figure. Because of the mirror field, the plasma in the mirror region is accelerated 
more rapidly than that at the plane of symmetry (Fig. 2) and is the first to converge 
on the axis and rebound (Fig. 3). As the mirror plasma rebounds the plasma at the 
plane of symmetry converges on the axis (Fig. 4). 

High compression occurs in the mirror region because of the strong fields, but 
the highest compression (1.6 x 1017/cm3) occurs at the plane of symmetry because 
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3.55 

E-02 

FIG. 2. Theta pinch density at 0.2 psec. (ni)max M 4.1 x 101s/cm3. 

3.55 

E-02 

FIG. 3. Theta pinch density at 0.2506 ~sec. (n&,8X - 1.1 x 10”/cm3. 
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FIG. 4. Theta pinch density at 0.3019 ysec. 
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FIG. 5. Theta pinch ion temperature at 0.2506 ~sec. (TJmax C=S 34 eV. 



ALTERNATING DIRECTION 1MPLlCIT TECHNIQUES 

-0.04 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

E-02 

FIG. 6. Theta pinch electron temperature at 0.2506 psec. (T,)Iw M 57 eV. 
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of axial motion of the plasma toward that plane. The ion temperature follows 
from the approximately adiabatic compression of the ions and indicates little energy 
gain from the hot electrons. The electron temperature is a result of resistive heating, 
adiabatic compression, and thermal conduction along magnetic field lines. Figures 5 
and 6 show the ion and electrons temperature profiles corresponding to Fig. 3. 
It is to be noted that although very little compression and resistive heating has 
occurred at the plane of symmetry near the axis, the electron temperature is very 
much higher than the initial temperature. The reason is the strong thermal 
conduction to this region along field lines from regions of strong compression and 
heating. Hence, thermal conduction is a preheat mechanism for plasma at the 
center of the plasma, and the values of thermal conductivity involved suggest that 
this can be an important effect in considerably longer systems. 

Figure 7 shows the motion of the plasma corresponding to Fig. 3. Although 
the motion of the imploding plasma is primarily radial, all plasma has some 
negative axial motion, and a large part of the rebounding plasma’s motion is 
axial (upper left corner of Fig. 7). An examination of the forces causing the axial 
motion shows that it is primarily the axial pressure gradients resulting from the 
more rapid radial implosion of the plasma near the mirror, and not the magnetic 
field curvature, which axially accelerates the plasma. This conclusion agrees with 
the experimental observations of Sato et al. [19]. The motion of the rebounding 
plasma and the motion at the start of the reimplosion suggests that on the second 
pinch the axial flow will be considerably greater than during the initial implosion. 

APPLICATION: LASER-PRODUCED PLASMA 

Theoretical consideration of the dynamics of the expanding plasma produced 
by laser irradiation has been confined to one-dimensional spherical models. 
Dawson [20] derived an integrated similarity model, assuming uniform density 
and temperature and a radial velocity that increases linearly from the center to the 
edge, and was able to predict features of the plasma motion in the absence of a 
magnetic field. Fader [21] used finite difference techniques to solve directly the 
one-dimensional (spherical), single-fluid, hydrodynamic partial differential 
equations, including absorption of energy from the laser beam. Kidder [22] 
obtained numerical solutions to the one-dimensional, two-fluid hydrodynamic 
equations. Nuckolls et al. [23] have discussed the possibilities of thermonuclear 
reactions in laser-irradiated pellets. 

Attempts to describe the interactions of the plasma and a confining magnetic 
field have also been limited primarily to one-dimensional models. Bhadra [24] 
has extended Dawson’s model to include a magnetic field and resistive effects and 
has illustrated qualitatively some features of the “bouncing” of the plasma against 
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the field. Fader et al. [25] have incorporated the magnetic field into the one- 
dimensional hydrodynamic equations and have solved the equations numerically. 
McKee [26] has used Bhadra’s magnetic field treatment in a spherical integrated 
similarity model which assumes a density profile that decreases linearly with radius. 
Poukey [27] has done a two-dimensional calculation of the motion of an infinite- 
conducting plasma shell in an initially homogeneous magnetic field. 

It is the purpose of this section to apply the two-fluid MHD model and the AD1 
numerical methods to the study of the trapping and thermalization of a high- 
density, high-temperature, i.e., laser-produced, plasma expanding into a magnetic 
field. The calculations will use as initial conditions results obtained by others in 
spherical calculations. The calculations will be initiated well after the laser 
irradiation and plasma heating has ceased, and attention will be devoted only to 
the plasma-field interaction. 

It is convenient in the Eulerian approach to solving MHD equations to have 
a background plasma present throughout the region of solution, so that plasma 
equations can be used. The alternate choice, plasma equations at some points and 
vacuum equations at others, has been discussed by Roberts and Potter [2]. The 
appropriate vacuum equation is elliptic, but efficient methods are available for 
solving the elliptic equation. A major difficulty in using the alternate approach for 
the problem considered here appears to be the determination of the plasma-vacuum 
interface on a finite orthogonal mesh. The more convenient approach, background 
plasma everywhere, has been chosen for our calculations. 

The set of magnetohydrodynamic equations appropriate for study of the 
expanding laser-produced plasma is the same set of equations appropriate for the 
study of the theta pinch. However, the ion pressure Pi , the electron pressure P, , 
and the plasma magnetic stream function #’ were chosen to be dependent variables. 
The magnetic field stream function is separated into plasma and external com- 
ponents, i.e., 

*’ = $J’ + +=, (9 

where 
azp 
8r2 

+ av l WE = 0 
--SF--- * r ar (45) 

Therefore, the vector to be calculated is 

u = (P, 0, , vz 2 pi f p, , PI (46) 

and the transport coefficients appearing in the differential equations are 

The two pressures have been chosen because in the course of the expansion the 
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temperatures in the interior region of the main plasma become less than the 
temperatures in the outer region, even though the pressures are greater in the 
interior. Consequently the plasma motion is from a region of lesser temperature 
into a region of higher temperature, and calculations using the temperatures as 
dependent variables eventually yield nonphysical low and negative temperatures 
which could only be prevented by using the one-sided, first-order finite difference 
approximations to the first spatial derivative. By contrast, plasma motion is from 
a region of higher to lower pressure for a longer time, so with pressures as dependent 
variables fewer difficulties arise with the use of the standard space-centered second- 
order finite difference approximations to the first spatial derivatives. 

The difference method used is essentially the method described earlier. The 
transport coefficients and their derivatives are treated explicitly. A major difference 
between the method described and the actual difference equations used is in the 
treatment of the thermal conduction terms in the pressure equations. All thermal 
diffusion terms are written in flux-divergence form rather than in completely 
expanded form. 

The initial conditions for the calculations are taken from numerical results 
obtained by McKee [26]. McKee’s calculations are for a quartz fiber irradiated by 
a 117 megawatt, 25 nanosecond neodymium laser, thus creating a plasma of 
7.5 x lOI ions; the quartz fiber is placed in an initially homogeneous 10 kG 
magnetic field. McKee’s calculations show that at 25 nsec after the laser beam is 
initiated, the plasma has expanded to a radius of 0.1 cm and has a uniform 
(by assumption) temperature of 10 eV; the corresponding skin depth is approx- 
imately 0.04 cm, indicating that the magnetic field has been excluded from the 
plasma, and the plasma boundary radial velocity is 1.01 x 10’ cm/set. 

The plasma will be assumed to be initially spherically symmetric, so initial 
conditions can be described in terms of the spherical radius, R = (P + z2)l12. The 
initial density and temperature will be taken to decrease linearly from a maximum 
at the origin to some minimum at a radius R = R, . The initial spherical radial 
velocity of the main plasma will be taken to increase linearly to a maximum at 
radius Ii,. If the background plasma, i.e., the plasma outside R,, , is initially 
stationary, the numerical solutions obtained will depend very strongly on the 
adiabatic shock speed (or, equivalently, the temperature) of the background 
plasma and will not closely approximate the solution which would be obtained if 
a vacuum were present. Consequently, the background plasma will also be initially 
in motion with a velocity profile having a maximum at R. and decreasing linearly 
to zero at some multiple of R, . The magnetic field will be initially uniform and 
directed in the z direction. It follows that the initial total stream function $r must 
be parabolic in r and independent of z, and because the magnetic field is uniform, 
the plasma stream function #’ is initially zero. 

The initial plasma radius R,, is taken to be 0.1 cm and the velocity at R,, is 
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IO5 m/set. The uniform axial magnetic field is 10 kG. The density and temperature 
at the origin are 7.2 x 10’8 ions/cm3 and 25 eV, respectively. Straightforward 
calculations show that the plasma described contains, within a sphere of radius R,, 
centered at the origin, 7.5 x lOI ions having a kinetic energy of about 0.5 J (joule) 
and a total thermal energy of 0.036 J. Except for the different temperature profile, 
the initial main plasma is in the same configuration as McKee’s plasma 25 nsec 
after the initiation of laser irradiation. Although McKee’s calculations indicate 
that by 25 nsec the magnetic field is excluded from the plasma, the initial field for 
our calculations is taken to be uniform everywhere, including the main plasma, 
since it is impossible to resolve differences over length scales comparable to the 
skin depth of McKee’s calculations on a finite mesh of the size indicated below. 
The total mass in the background plasma is about one-third of the mass of the 
main plasma. However, the total kinetic energy of the background plasma is less 
than 0.01 J and the thermal energy less than 1.5 x 1O-4 J, which should be 
compared to the magnetic field energy of 6.25 J. Therefore, it is conjectured that the 
existence of the background plasma, because of its initial motion and because of 
its low energy density, should not seriously affect the dynamics of the main plasma. 

The region of solution is taken to be the rectangular region in the r-z plane 
shown in Fig. 8. As for theta pinch calculations, OC and z will be a plane and 

PLASMA 

PLANE OF SYMMETRY 

PLASMA 

FIG. 8. Region of solution for laser-produced plasma. 
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axis, respectively, of symmetry, but AB and E will be merely interpreted as being 
regions sufficiently far from the origin that boundary conditions applied at these 
boundaries do not greatly affect the calculations. The region of solution is broken 
up into a 33 by 37 mesh, 33 mesh points in the radial direction and 37 in the axial 
direction. For the first 20 mesh points in both direction, the point spacing is 
uniform and the same in both directions. For the remaining points the spacing 
is nonuniform, increasing geometrically with a common ratio of 1.065, and is 
slightly different in each direction. The uniform region in the center is used to give 
the calculations a chance to “settle down” before the main plasma enters the -- 
nonuniform mesh. As in the theta pinch case, the boundaries OA, AB, and ?% are 
centered between the outermost rows of mesh points, and the boundary BC 
coincides with the outermost row. 

The same boundary conditions as used for the theta pinch calculations of the 
previous section are imposed at the boundary a, so that the axial derivatives of 
all quantities are set to zero. On BC, the density and temperatures, and hence 
pressures, are held at their initial values, and the normal, i.e., radial, derivatives 
of all other quantities are set to zero. Setting the radial derivative of #’ to zero on 
BC is equivalent to requiring the total axial field at that boundary to remain 
unchanged; however, it does allow magnetic flux to pass out of the boundary. 

The boundary conditions which have been discussed are quite simple from both 
a physical and a computational standpoint. The simplicity on boundaries m and 
z results, of course, from the assumed symmetry and is therefore physically 
correct. On the other hand, the boundary conditions imposed on AB and BC can 
only be correct if indeed these boundaries are located far from the main plasma. 

We wish to explain the formation of the high temperature shell observed in 
experiments and to predict a “bounce” radius at which the expanding motion 
transverse to the magnetic field is stopped. As the laser-produced plasma moves 
across the magnetic field, azimuthal currents are induced in the plasma. As 
demonstrated by the various one-dimensional models, the currents are localized 
in the outer regions of the plasma and it is the interaction of the induced currents 
with that magnetic field which eventually halts the transverse motion of the 
plasma. 

As the plasma expands, it takes on a nonspherical shape. The plasma density 
shows some deviation from spherical symmetry at 26.1 nsec as is shown in Fig. 9. 
The electron pressure profile at 26.1 nsec is shown in Fig. 10. A shell of very high 
pressure and high temperature has formed at much of the main plasma boundary. 
This shell is a result of the very localized currents at the boundary due to transverse 
motion across the magnetic field. The location of the currents is shown in Fig. Il. 
Because of the extremely high electron parallel thermal conductivity due to the 
high temperatures, thermal equilibrium between the main plasma and the back- 
ground plasma is established along magnetic field lines. The corresponding heat 
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FIG. 9. Laser-produced plasma density at 26.1 nsec. @&ax - 1.8 x 1017/cm? 
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FIG. 10. Laser-produced plasma electron pressure at 26.1 nsec. 
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FIG. 11. Laser-produced plasma current density at 26.1 nsec. 

loss by the main plasma to the background plasma is, of course, nonphysical if 
a true vacuum is being modeled, but because of the low density, and hence low 
specific heat, of the background, little energy is involved. 

By 57.6 nsec the plasma shape is considerably aspherical. Shown in Fig. 12 is 
the density profile at this time. Because of the decelerating force of the magnetic 
field, plasma is decelerated near the main plasma boundary. Plasma expanding 
from the center catches up with the outer plasma, and matter “piles up” against 
the field lines. The interior plasma is still moving spherically outward from the 
origin; but near the interface, where the magnetic field-plasma interaction is 
strong, the plasma motion is beginning to be bent toward the direction of the field 
lines. 

As the main plasma expands there is a tendency for the magnetic field to be 
excluded from the plasma; i.e., total magnetic flux is nearly constant. Shown in 
Fig. 13 is the total axial magnetic field, BzT(BzT = Bzp + BzE), profile. For Fig. 13, 
the origin is at the lower right-hand side, the radial axis is increasing to the left, 
and the axial axis is increasing to the right rear. 

The basic qualitative features of the expanding laser-produced plasma remain 
essentially the same as the plasma moves outward and “bounces.” The interior 
plasma appears to move virtually unaffected by the outer plasma-field interaction 
until it catches up with the high-density, high-temperature, high-pressure shell 
which has formed because of the deceleration of the plasma motion transverse to 
the magnetic field. The shell structure is most pronounced at the plane of symmetry, 
where all motion is transverse motion, and the structure becomes less pronounced 
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FIG. 12. Laser-produced plasma density at 57.6 nsec. (ni)msx w 3.3 x 1018/cmJ. 
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FIG. 13. Laser-produced plasma total axial magnetic field at 57.6 nsec. 



9.0 - 
8.5 
8.0 - 
7.5 - 
7.0 - 
6.5 - 
6.0 - 
5.5 - 

fry 5.0 - 
7 4.5- 
l&J 4.0- 

3.5 - 
3.0 - 
2.5 - 
2.0 - 
I.5 - 
I.0 - 
0.5,- 
0.0 - 

WI 
0 

IL 

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

E-02 

FIG. 14. Laser-produced plasma flow field at 113.5 nsec. 
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FIG. 15. Laser-produced plasma total stream function at 113.5 nsec. 
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away from the plane of symmetry where the plasma motion is oblique to the field 
lines. The motion of the obliquely moving plasma in the shell is bent in the direction 
of the field. The axial component, as well as the radial component, of the motion is 
decreased as the plasma forms its own mirror. 

By t = 113.5 nsec much of the shell has a negative radial velocity (Fig. 14); 
however, the plasma motion with respect to the magnetic field is still mostly 
outward as the field lines in Fig. 15 indicate. Only near the plane of symmetry has 
the transverse motion actually stopped and reversed. The bounce radius is about 
0.6 cm. To what extent the remainder of the plasma will bounce in the mirror field 
it creates has not yet been investigated. 

These laser-produced plasma calculations show the formation of a high-density 
(Q > 1016/cm3) shell at the outer region of the expanding plasma. The high density 
is a result of the deceleration of the plasma by the magnetic field. The calculations 
indicate that electron thermal equilibrium is established along magnetic field lines. 
The magnetic field is strong enough, however, to inhibit thermal conduction across 
the field lines, and hence the high temperature persists. The formation and 
persistence of a luminous shell as a laser-produced plasma expands against a 
magnetic field has been observed in the experiment of Tuctield and Schwirzke [28] 
and the calculations presented here suggest that the shell can be explained from a 
purely classical standpoint. 

NUMERICAL STAEIILITY CRITERIA 

When a set of nonlinear partial differential equations such as those discussed are 
solved numerically, the stability analysis of the corresponding difference scheme is 
very difficult. Consequently, a stability analysis of the alternating-direction implicit 
difference equations is beyond the scope of this paper. It is expected that the 
implicit techniques will allow calculations to be performed with a larger time step dt 
than would be possible with explicit methods, i.e., enhanced numerical stability is 
expected. 

We introduce the following numbers 

(48) 
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& = -g [I zi, 1 + (ye, + yee + B,2 + B,2)1’z], 
POP 

so = g [I 21, 1 + (ye, + ye, + B," + Bq1'2], 
POP 

(52) 

(53) 

S, = At& . (54) 

It is conjectured that in the explicit numerical solution of the two-fluid MHD 
equations, the time step used would have to be small enough so that all of the 
numbers defined above would have to be less than or equal to unity at all mesh 
points as a necessary condition for numerical stability [29, 301. The number S, 
is associated with electron thermal diffusion, S, is associated with resistive diffusion 
of the magnetic field, and S, is associated with magnetoacoustic waves. Figure 16 
shows values of maximum S, and S, as a function of time for the theta pinch 
calculations; the discontinuities indicate changes in time step size. For the laser 
plasma calculations, the maximum S, was in general between 7.5 and 15.0, and the 
maximum S, was over 24. Thus, as expected, the alternating direction implicit 
finite difference equations permit a larger time step than explicit methods. For 
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FIG. 16. Theta pinch stability numbers. 
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both calculations, the time step limitation was attributed to the mixed second 
derivative in the electron thermal conduction terms. In early laser-produced 
calculations using scalar transport coefficients, it was possible to operate with time 
steps such that S, was well over 100. Calculations have also been performed in 
parameter ranges where resistive and thermal diffusion was small, and in these 
instances, a maximum S, of over 40 was attained, and in near equilibrium states 
considerably higher values of S, have been attained. 

Although no direct comparison has been made, we have argued [18] that the 
computer operating time per time step for a fully explicit code using the same 
model and doing the same problem should be no less than 20 % of the time required 
per time step for the code in which the alternating direction implicit methods of 
this paper have been implemented. Therefore, the calculations of this paper have 
been performed with less total computer operating time than might be required 
with a less sophisticated numerical method. 
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